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Time-derivative Lorentz materials and their utilization as electromagnetic absorbers

Richard W. Ziolkowski*
Electromagnetics Laboratory, Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona
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A time-derivative Lorentz material model is introduced for the polarization and magnetization fields in a
complex medium illuminated by an ultrafast pulsed beam. This model represents a straightforward generali-
zation of the standard Lorentz material model to include the time derivatives of the fields as driving mecha-
nisms. The Green function for this material is derived and used to demonstrate that it is causal and passive. An
electromagnetic absorber is constructed with this time-derivative Lorentz material, and simulations are given
which illustrate its effectiveness under illumination by obliquely incident, ultrafast, pulsed Gaussian beams
having narrow and broad waists.@S1063-651X~97!06206-5#

PACS number~s!: 41.20.Jb, 41.20.Bt
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I. INTRODUCTION

Electromagnetic absorbers have many practical uses
demand for them is increasing. These include the now
mous stealth technologies and practical EMI-EMC~EMI
5electromagnetic interference and EMC5electromagnetic
compatibility! countermeasures for personnel communi
tions and computers, as well as the more traditional c
absorbing materials for anechoic chambers. The immens
terest in complex media such as artificial chiral materi
@1–4# has arisen from such needs. The artificial chiral ma
rials such as the helix-loaded substrates@3# are worthy of
particular note since they represent a very nice exampl
our current ability to engineer absorbers which have str
magnetic, as well as electric, properties designed into th
In contrast, artificial dielectrics have been known for ma
years@5–7# and have found uses, for example, as lightwei
lenses and currently as photonic band gaps@8#.

Absorbers have also attracted much attention recentl
the computational electromagnetics community. The nee
truncate the simulation domain in any finite difference
finite element approach is well known. Many approach
have been developed to achieve this truncation; they are
erally classified now simply as absorbing boundary con
tions ~ABCs!. As with any real-life absorber, the perfe
ABC would absorb perfectly any frequency of electroma
netic radiation incident upon it from any angle of incidenc
The Berenger perfectly matched layer~PML! ABC @9#
comes quite close to this goal. In particular, the PML AB
has been shown@10–18# to be orders of magnitude mor
absorbing than the previously popular Mu¨r second-order
ABC @19#. However, the PML ABC is implemented in
non-Maxwellian fashion through the field equation splitti
introduced by Berenger@9#. This is not a serious drawbac
numerically, but it does mean that a PML region cannot
realized physically.

A broad bandwidth absorbing material that is Maxwelli
and hence potentially realizable with a proper engineering
artificial materials has been introduced in@20#. It is based

*FAX: ~520! 621-8076. Electronic address:
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upon a generalization of the Lorentz model for the polari
tion and magnetization fields that includes the time deri
tive of the driving fields as a source term. The physical ba
for this time-derivative Lorentz material~TD-LM ! model is
developed in Secs. II and III. The Green function for t
TD-LM model is derived; it is used to demonstrate that t
TD-LM is causal and passively absorbing. An electroma
netic absorber is constructed with this TD-LM model, a
simulations are given in Sec. IV which illustrate its effectiv
ness under illumination by obliquely incident, ultrafas
pulsed Gaussian beams having narrow and broad wa
Analogies between the constitutive relations correspond
to the TD-LM model and those associated with bianisotro
materials are discussed in Sec. V.

II. PERFECT ABSORBER

We wish to consider the interaction of a general thre
dimensional electromagnetic plane wave@exp(2ivt) conven-
tion assumed throughout#, which is generated in free spac
(z,0), with a semi-infinite medium (z>0) whose normal is
assumed to be in thez direction. Let the interface betwee
these two regions be the planez50. The general obliquely
incident three-dimensional plane wave case can be redu
to two orthogonal TE and TM plane wave problems@21#. For
the material regions to be considered here, it is noted tha
second problem could be obtained from the first one by
ality. Consider then an incident plane wave which is direc
from the free space region upon the interface of this se
infinite region at the angleu with respect to the interface’s
normal. This means the incident plane wave has the w
number components

kx
inc5k0sinu, ~1a!

kz
inc5k0cosu, ~1b!

which satisfy the free space dispersion relationkx
21kz

2

5v2e0m0 . Let the plane of incidence be spanned with t
coordinatesx and z. This incident two-dimensional plan
wave can be either TE~perpendicular polarization ors wave!
with componentsEy , Hx , andHz, or TM ~parallel polariza-
tion or p wave! with componentsHy , Ex , and Ez .
7696 © 1997 The American Physical Society
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If the medium (z.0) is assumed to be biaxial with pe
mittivity and permeability tensors in the frequency doma
of the form

e% ~v!

e0
5S av 0 0

0 bv 0

0 0 cv

D , ~2a!

m% ~v!

m0
5S av 0 0

0 bv 0

0 0 gv

D , ~2b!

the separability of the TE and TM polarizations will b
maintained for the transmitted field. For plane waves
Maxwell curl equations in this medium take the formkW3HW

52ve% (v)•EW andkW3EW 51vm% (v)•HW . The corresponding
dispersion relations for the transmitted TM and TE polariz
fields in this material are immediately obtained and can
written, respectively, in the forms

~kx
trans!2

bvcv
1

~kz
trans!2

avbv
5v2e0m05k0

2, ~3a!

~kx
trans!2

bvgv
1

~kz
trans!2

avbv
5v2e0m05k0

2. ~3b!

The associated transmitted wave number components fo
TM polarized field are

kx
trans5k0Abvcv sinu trans, ~4a!

kz
trans5k0Aavbv cosu trans, ~4b!

and for the TE field are

kx
trans5k0Abvgv sinu trans, ~5a!

kz
trans5k0Aavbv cosu trans. ~5b!

The corresponding transmitted electric field components
the TM polarized case are

Ex
trans1h0Hy

incS bv

av
D 1/2cosu trans, ~6a!

Ez
trans52h0Hy

incS bv

cv
D 1/2sinu trans, ~6b!

and for the TE polarized case are

Hx
trans52

1

h0
Ey
incS bv

av
D 1/2cosu trans, ~7a!

Hz
trans51

1

h0
Hy
incS bv

gv
D 1/2sinu trans, ~7b!

where the free space wave impedanceh05(m0 /e0)
1/2. Thus

the transmitted angle and the corresponding transverse w
impedance of the TM polarized case are simply
e

d
e

he

r

ve

u trans~v!5sin21~sinu/Abvcv!, ~8a!

Ztrans~v!51h0S bv

av
D 1/2cosu trans~v!, ~8b!

and for the TE polarized wave case

u trans~v!5sin21~sinu/Abvgv!, ~9a!

Ztrans~v!52
1

h0
S av

bv
D 1/2secu trans~v!. ~9b!

Therefore the reflection coefficient for the TM polarizatio
case is

R~u!52
12Abv /av@cosu trans/cosu#

11Abv /av@cosu trans/cosu#
~10a!

and for the TE polarization case is

R~u!5
12Abv /av@cosu trans/cosu#

11Abv /av@cosu trans/cosu#
. ~10b!

We observe that there will be no reflected wave in the T
polarization case ifbv5av and u trans5u, which from Eq.
~8a! is satisfied ifbvcv51. Similarly, there will be no re-
flected wave in the TE polarization case ifbv5av and
u trans5u, which from Eq. ~9a! is satisfied ifbvgv51. In
addition, if it is desired to have the TE and TM transmitt
waves propagate at the same speeds~to have the same dis
persion surfaces!, then one must simply requireav5av .
Therefore, in summary, the medium will be reflectionless
either polarization and for any angle of incidence and for a
frequency if it is uniaxial and has the relative permittivi
and permeability tensors of the form

e% ~v!

e0
5

m% ~v!

m0
5S av 0 0

0 av 0

0 0 1/av

D 5L% z~v!. ~11!

The material will then be a perfect absorber if in addition

Im~av!.0, ~12!

since the uniaxial medium specified by Eq.~11! produces

u trans5u, ~13a!

kx
trans5kx

inc , ~13b!

kz
trans5avkz

inc , ~13c!

so that the transmitted wave propagates in the medium w
the same angle as the incident plane wave, but with a lo
propagation constant perpendicular to the interface, i.e.,

exp~ ikW•rW !5exp~ ikx
incx!exp@ i Re~av!kz

incz#

3exp@2Im~av!kz
incz#. ~14!
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7698 55RICHARD W. ZIOLKOWSKI
The larger the imaginary component ofav is, the faster the
absorption in the material with respect to depth of pene
tion will be.

It is to be noted that the choice of thez direction for the
normal to the interface was arbitrary. A reflectionless m
dium is achieved for any choice of the normal if the relati
permittivity and permeability tensors are equal and diago
and if the transverse material coefficients of those tensors
equal and their longitudinal components are inverse to t
transverse components. This equality of the relative perm
tivity and permeability tensors is unusual, but it can be m
tivated on physical grounds. For a dispersionless, homo
neous, isotropic medium with permittivitye and permeability
m, one finds that the wave impedance in the medium matc
that of free space if the ratio of the relative permeability a
permittivity is one; i.e.,Am/e5Am0 /e0 if e/e05m/m0 .
Equation~11! is a generalization of this condition. It is als
noted that it is straightforward to show that if two reflectio
less media satisfying Eq.~11!, one whose normal is alon
z with L% z(v) and one whose normal is alongx with
L% x(v), intersect at right angles, then the region of inters
tion is reflectionless if the relative permittivity and perm

ability tensor in that regionL% xz(v)5L% x(v)3L% z(v). Simi-
larly, if three such regions intersect at right angles, then
region of intersection is reflectionless if the relative perm
tivity and permeability tensor in that regionL% xyz(v)
5L% x(v)3L% y(v)3L% z(v). If one now labelsav in Eq. ~11!
asaz(v) andax(v) as the corresponding term inL% x(v) and
ay(v) in L% y(v), the resulting diagonal elements o
L% xyz(v) are cyclic permutations of itsxx element
ay(v)az(v)/ax(v).

As argued in@21#, the permittivity and permeability com
ponentsav andcv can be constructed from the correspon
ing frequency-domain electric and magnetic susceptibili
xv so that, respectively,av511xv and cv5(11xv)

21

512xv(11xv)
21. This means the effective electric an

magnetic susceptibility tensors will be

e% ~v!21%

e0
5

m% ~v!21%

m0
5S xv 0 0

0 xv 0

0 0 2xv /~11xv!
D .

~15!

Then to construct an absorber that deals effectively with
trafast pulses, one needs to introduce a model for the sus
tibility xv that has a large bandwidth. As found in@20#, such
a susceptibility model can be developed if the polarizat
~magnetization! of the medium is driven with contribution
from time derivatives of the electric~magnetic! fields. We
note that our medium has already been assumed to have
electric and magnetic properties. As discussed by Buck
ham and Dunn and Raab and co-workers@22–26#, field time-
derivative contributions to the polarization and magneti
tion fields can occur in a linear medium when it has bo
electric and magnetic properties. These time-derivative
haviors begin to play a nontrivial role in the ultrafast pul
regime. A similar model has been introduced in@27#, a study
of ultrafast light pulse interactions with resonant absorb
-
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media, to model more exactly the frequency dependenc
the absorption coefficient far from the resonance frequen

To model such behavior in a macroscopic sense, one
introduce a generalization of the Lorentz model for the p
larization and magnetization fields that includes the time
rivative of the driving fields as a driving term. For instanc
the x-directed polarization field in such a material would
assumed to satisfy a linear time-derivative Lorentz mate
model of the form

]2

]t2
Px1G

]

]t
Px1v0

2Px5e0vp
2S xaEx1

xb

vp

]

]t
ExD ,

~16!

wherev0 is the resonance frequency andG is the width of
that resonance. The termsxa andxb represent, respectively
the coupling of the electric field and its time derivative to t
local charge motion. The termvp can be viewed as the
plasma frequency associated with those charges. T
TD-LM model leads to the following frequency-doma
electric susceptibility:

xv
TD[

Pv,x~rW !

e0Ev,x~rW !
5

vp
2@xa2 i ~v/vp!xb#

v0
22v22 iGv

5
~v0

22v2!vp
2xa1vpv

2Gxb

~v0
22v2!21~vG!2

1 i
vGvp

2xa2~v0
22v2!vpvxb

~v0
22v2!21~vG!2

. ~17!

In comparison to the Lorentz model, this TD-LM model co
tains four independent quantities (vp

2xa ,vpxb ,v0 ,G)
which can be adjusted to produce any desired response.
introduction of the plasma frequency in the driving term
allows the coefficientsxa and xb to be dimensionless an
permits a relative frequency measure between the plasma
resonance frequencies.

Choosingxv5xv
TD , one can satisfy Eq.~12! to make the

uniaxial medium defined by Eq.~15! a passive absorber i
Im(xv5xv

TD).0. From Eq.~17! this occurs if

xa.S v0
2

Gvp
D F12S v

v0
D 2Gxb . ~18!

With xa ,xb.0, this condition is satisfied for all frequencie
above the resonance, i.e., forv.v0 . On the other hand, if,
for instance,xb,0 andxa.0, it is satisfied at all frequen
cies below the resonance, i.e., forv0.v. Thus, to absorb
completely a given pulse~i.e., without reflections!, the ma-
terial must be designed to have its resonance frequency
side of the frequency spectrum of the pulse. This could
achieved in several ways. One could design the materia
that v0;0 and deal only with realistic propagating signa
which would have no dc components. On the other hand,
could design materials with multiple resonances with th
material constants chosen in such a manner that any pul
completely absorbed. Nonetheless, a single resonance m
would be adequate for most numerical or practical appli
tions which would deal with pulses having band-limited fr
quency spectra.
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55 7699TIME-DERIVATIVE LORENTZ MATERIALS AND THEIR . . .
Thus a broad bandwidth absorber is realized if
uniaxial TD-LM is designed so thatxa ,xb.0 andv@v0 .
This results in the susceptibility

xv>
vp
2xa2 ivvpxb

2v22 ivG
. ~19!

If, in addition,v@G, the susceptibility further reduces to th
form

xv>2S vp

v D 2xa1 i
vpxb

v
. ~20!

This limit would occur naturally for high frequency case
On the other hand, ifv!G, the susceptibility takes the form

xv>1
vp

G
xb1 i

vp
2

Gv
xa . ~21!

This latter case would occur when the resonance and si
frequencies are close to zero, but the resonance itse
broad.

A unit amplitude plane wave propagating along thez axis
in a material, for instance, described by Eq.~20! will have
the form

exp~ ikzz!5exp@ i ~11xv!~v/c!z#

5exp$ i @12~vp /v!2xa#~v/c!z%

3exp@2~vpxb!z/c#. ~22!

Clearly, such a medium will be very lossy ifvpxb@v in the
frequency regime of interest. It will also be effectively di
persionless if in additionxa!1 or vp

2xa!v2.

III. PHYSICAL BASIS FOR THE TD-LM ABSORBER

A. Derivation of the causal TD-LM Green function

To understand the physical nature of the TD-LM mod
we develop the causal Green function and general solutio
Eq. ~16!. This time-domain equation can be written in ge
eralized function form

$d91Gd81v0
2d%*P5e0@vp

2xad1vpxbd8#*E, ~23!

which indicates that the corresponding Green function eq
tion is

$d91Gd81v0
2d%*GTD-LM5e0@vp

2xad1vpxbd8#.
~24!

Hence the requisite impulse response is

GTD-LM5e0$d91Gd81v0
2d%21@vp

2xad1vpxbd8#.
~25!

We proceed with the knowledge of the standard Lore
model’s Green function problem:

$d91Gd81v0
2d%*GL5d, ~26!

which has the well-known causal solution
e

.

al
is

,
of
-

a-

z

GL~ t !5$d91Gd81v0
2d%21

5expS 2
Gt

2 D sinvt

v
Y~ t ![gL~ t !Y~ t !, ~27!

whereY(t) is the Heaviside function and

v5Av0
22G2/4. ~28!

Thus one finds that the Green function to Eq.~16! is

GTD-LM~ t !5e0@vp
2xad1vpxbd8#*GL~ t !

5e0vp
2xaGL~ t !1e0vpxb] tGL~ t !

5e0expS 2
Gt

2 DY~ t !H vp
2xa

sinvt

v
1e0xb

vp

v

3F2
G

2
sin~vt !1v cos~vt !G J . ~29!

Introducing the terms

cos~vtR!5
G

2v0
, ~30a!

sin~vtR!5
v

v0
, ~30b!

xR5xb

v0

vp
expS 2

GtR
2 D , ~30c!

the expression~29! for the TD-LM Green function become

GTD-LM~ t !5e0vp
2expS 2

Gt

2 DY~ t !Fxa

sin~vt !

v

2xb

v0

vp

sin@v~ t2tR!#

v G
5e0vp

2@xagL~ t !2xRgL~ t2tR!#Y~ t !. ~31!

Since the solution to Eq. ~16! is simply P(t)
5GTD-LM(t)*Ex(t), this result shows that the TD-LM mode
involves two ordinary Lorentz-type dipole terms, one shift
in time from the other by a real valued constant time sh
tR . We note that Eq.~31! immediately demonstrates that th
TD-LM Green function is causal@the presence of the Heav
side functionY(t)# and passive~the presence of the expo
nential decay term ingL!. According to the explanation
given in@28#, p. 309, the passive nature of the TD-LM mod
~16! is also expressed by the result that

GTD-LM~01!5e0vpv0xb

sin~vtR!

v
[e0vpxb.0. ~32!

This conclusion coupled with Eq.~22! also shows that the
xb terms are to be associated with the loss mechanism
the TD-LM model. From Eq.~31! this means that these los
mechanisms are associated with an out-of-phase oscil
component which results from the time derivatives of t
electric field in Eq.~16!.
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7700 55RICHARD W. ZIOLKOWSKI
B. Plausibility arguments for the field time derivative
in the TD-LM

To uncover a naturally occurring or an artificially co
structed material exhibiting the TD-LM behavior, one mu
understand further the possible physical origins of the tim
derivative behavior in Eq.~16!. The presence of the field
time derivative in the TD-LM model can be further mot
vated from microscopic arguments dealing with two-lev
atom media. It has been shown by Ziolkowski, Arnold, a
Gogny @29# at this quantum mechanical level that such
time-derivative field behavior exists and can contribute s
nificantly to the behavior of materials when ultrafast puls
are interacting with it. If one examines the first-ord
Maxwell-Bloch equations describing electromagnetic wa
interaction with a two-level atom medium and the resulti
second-order system, one finds that the instantaneous
sponses of the dispersive and quadrature terms are, re
tively, r1;v0

22(2g/\)r3E and r2;v0
22(2g/\)r3] tE,

whereg is the dipole coupling coefficient andr3 is a mea-
sure of the population difference between the ground and
excited state@r3521(11) occurs when all of the atoms ar
in the ground~excited! state#. This means that the retarde
responses of the system will be governed to first order by
damped spring oscillator equations

] t
2r11

1

T2
] tr11v0

2r152
v0

T2
r21

2g

\
r3v0E

;r3
2g

\T2
S ~v0T2!E2

1

v0
] tED ,

~33a!

] t
2r21

1

T2
] tr21v0

2r251
v0

T2
r11

2g

\
r3v0] tE

;r3
2g

\T2
@E1T2] tE#. ~33b!

The appearance of the time derivative of the electric field
Eq. ~33a! is associated with the loss terms which are char
terized by the dephasing timeT2 of the system. Since the
polarizationP52Natomgr1 of this medium, whereNatom is
the number of two-level atoms per unit volume in it, th
appearance of the TD-LM model is immediate.

A time derivative of the electric~magnetic! field also ap-
pears in the polarization~magnetization! expression obtained
by time-dependent perturbation expansion analysis in non
ativistic quantum mechanics. Following the developm
given by Buckingham and Dunn@22#, let the medium be a
set of atoms described by the HamiltonianĤ5Ĥ01Ĥ int ,
whereĤ0 describes the unperturbed part andĤ int represents
the interaction part resulting from the electromagnetic fie
The unperturbed wave functions of the systemCn

(0)

5cn
(0)exp(2ivnt) satisfy the Schro¨dinger equationĤ0Cm

(0)

5\vm Cm
(0) . The quantum mechanical state of the p

turbed medium can then be described by the wave func
C(rW,t)5(m cm(t)cm

(0) e2 ivmt if the time-dependent coeffi
cients cm(t) are obtained. From time-dependent analy
these coefficients are given by the expressionscm(t)
t
-

l

-
s

e

re-
ec-

e

e

n
-

l-
t

.

-
n

s

2cm(0)5(i\)21 Sk *0
t dt8Hmk

(1)(t8)ck(t8)e
2ivmkt8, where the fre-

quency differencesvmk5vm2vk and the transition matrix
coefficientsHmk

(1)5^muĤ intuk&. The usual procedure is to as
sume that the medium is prepared in a single quantum s
of the unperturbed Hamiltonian, i.e.,ck(0)5dkn and the sys-
tem then evolves by the presence of the perturbing inte
tion term. The resulting perturbation expression for the tim
dependent coefficients is

cm~ t !'
1

i\ E
0

t

dt8Hmn
~1!~ t8!e2 ivmnt8. ~34!

Let the perturbing electric field be causal.@EW (t)50 for t
,0 and EW (t)Þ0 for t.0# and have the formEW (t)
5EW 0 sinvt for t>0. The interaction Hamiltonian is given
by the expressionH int(t)52pW •EW (t), wherepW is the electric
dipole moments of the atom. The dipole matrix coefficien
are given by the expressiondW i j5^ i upW u j &. Relaxation losses
are introduced with the substitutionvmn→vmn2 iGmn/2,
Gmn!vmn being the width of the transition. The coefficien
~29! of the perturbed wave function then have the values

cm~ t !'
i

\ H dWmn•@ ivmnEW ~ t !2] tEW ~ t !#3
exp~2 ivmnt !

v22vmn
2 1 iGmn

J
1Ce , ~35!

whereCe is a time-independent constant which depends
the initial values of the electric field and its time derivativ
Note that the single frequency~v! excitation electric field
and its time derivative have been reintroduced explicitly
this expression to emphasize the appearance of those te
Similar arguments lead to analogous expressions for
magnetic field and magnetic dipole terms.

The polarization vector of this linear medium, assumi
again that it is composed ofNatom atoms per unit volume, is
then obtained immediately from the observable

PW ~ t !5Natom(
m,n

^mupW un&

52 Re(
m,n

dWmncmn* ~ t !e2 ivmnt'a% 0•EW 1a% 1•] tEW .

~36!

In comparison, well below the resonance frequency wh
the perturbation analysis would be appropriate, the time
rivatives of the polarization in Eq.~16! are negligible and
Eq. ~16! reduces to the approximate form

Px'e0S vp

v0
D 2S xa Ex1

xb

vp

]

]t
ExD . ~168!

Thus in agreement with Eq.~168! the polarization vector~36!
depends not only on the electric field, but also on its tim
derivative. It should be noticed that, as discussed in conn
tion with Eq. ~16!, the time-derivative term in Eq.~36! is
most naturally associated with the imaginary part of the tr
sition matrix, hence with the loss of mechanisms.
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55 7701TIME-DERIVATIVE LORENTZ MATERIALS AND THEIR . . .
IV. TD-LM ABSORBER NUMERICAL SIMULATION

The effectiveness of a broad bandwidth, dispersionl
TD-LM absorber is illustrated with the TM Gaussian bea
scattering geometry shown in Fig. 1. The absorber is take
be a thin slab~l/5 at the center frequency of the beam! that
is terminated away from the source with a perfect elec
conductor. The reflection from the termination enhances
absorption in the medium since the reflected wave a
passes through the absorber. Thus the scatterer is a me
sheet coated with a thin film of the absorber. This scatter
process is modeled with the finite-difference time-dom
~FDTD! simulator described in Ref.@20#. A reflectionless
uniaxial Maxwellian material with the susceptibilities

xxx
E ~v!5

Px

e0Ex
5

vp
2@xa2 i ~v/vp!xb#

v0
22v22 iGv

, ~37a!

xyy
M ~v!5

My

Hy
5

vp
2@xa2 i ~v/vp!xb#

v0
22v22 iGv

, ~37b!

xzz
E ~v!5

Pz

e0Ez
52

vp
2@xa2 i ~v/vp!xb#

@v0
21vp

2xa#2v22 i @G1vpxb#v
~37c!

is included in the FDTD simulator by solving Maxwell’s cu
equations

]

]t
EW 5

1

e0
“3HW 2

1

e0

]

]t
PW , ~38a!

]

]t
HW 52

1

m0
“3EW 2

]

]t
MW ~38b!

self-consistently with the corresponding time-domain pol
ization and magnetization equations:

FIG. 1. The absorption properties of a perfect elect
conductor-backed TD-LM slab are characterized by measuring
reflected field arising when it is illuminated by a pulsed Gauss
beam.
s

to

c
e
o
llic
g
n

-

]2

]t2
Px1G

]

]t
Px1v0

2Px5e0vp
2FxaEx1

xb

vp

]

]t
ExG ,

~39a!

]2

]t2
My1G

]

]t
My1v0

2My5vp
2FxaHy1

xb

vp

]

]t
HyG ,

~39b!

]2

]t2
Pz1@G1vpxb#

]

]t
Pz1@v0

21vp
2xa#Pz

52e0vp
2FxaEz1

xb

vp

]

]t
EzG . ~39c!

Note that the perfect reflectionless Maxwellian material b
haves as a TD-LM in the directions parallel to the interfa
and as a TD-LM with a wider resonance whose location
shifted in the directions perpendicular to the interface. If t
coefficients satisfy Eq.~18!, this medium will be a perfect
~passive! absorber. It is to be noted that the presence of
explicit negative sign in the driving functions in Eq.~37c!
and hence Eq.~39c! might be interpreted as necessitating t
medium to have gain in the longitudinal direction. This is n
the case. It must be emphasized that the Green function
responding to Eq.~39c!, which has the same form as E
~26!, is also exponentially decaying and therefore no gain
realized. Nonetheless, the question of how to achieve
sign reversal for the longitudinal component in a real or
artificial material is currently under investigation.

An ultrafast pulsed TM Gaussian beam@30,31# is
launched with either a waist of 2l or 200l from a position
on the indicated source plane~numerically we generate a
Gaussian beam at the source plane with Huygens’ princ
and propagate the beam from the source plane towards
slab in a total field region and measure the reflected beam
the scattered field region away from the source plane! that
will produce a beam whose center coincides with the cen
of the interface of this slab. For illustration purposes on
the frequency of the beam was chosen to be 2.031013 Hz.
The pulse was a six-cycle sinusoid tapered on its first
last two cycles with a smooth function. The beam is pol
ized in thex-z plane. The TD-LM parameters were chosen
be v05vp52p32.031013, G51.03105, xa51.0
310210, andxb52.23106. The material parameters in th
FDTD TD-LM slab are given a quadratic profile to minimiz
numerical reflections from the slab-air interface@20#. The
amplitude reflection coefficient from the slab was obtained
the scattered field region by measuring the maximum in ti
of Hy

refl at a point along the central ray of the reflected bea
scaling it by the amplitude transport coefficient of the be
~which accounts for the amplitude decay in distance from
source!, and normalizing the result with respect to the cor
sponding value ofHy

inc at the interface. These amplitude r
flection coefficients for the narrow and wide beam cases
plotted in Fig. 2 as a function of the angle of incidence of t
Gaussian beam on the slab. The corresponding plane w
and line source results are given in Ref.@20#. Significant
absorption of both beams was realized even with a t

e
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TD-LM layer. These pulsed Gaussian beam results indic
that the absorber is handling well both wideband spatial
temporal frequencies.

V. COMMENTS

The TD-LM model leads to constitutive relations of th
form @20#

DW 5e% •EW 1G% E
•] tEW 5e% •EW 1g% E

•“3BW , ~40a!

HW 5m% 21
•BW 1G% B

•] tBW 5m% 21
•BW 1g% B

•“3EW , ~40b!

which are similar to those encountered in Refs.@22–26# and
are analogous to the Drude-Born-Fedorov model associ
with bianisotropic media such as optically active and ch
materials@1–4#:

DW 5e% •EW 1G% E
•] tBW 5e% •EW 1g% E

•“3EW , ~41a!

HW 5m% 21
•BW 1G% B

•] tEW 5m% 21
•BW 1g% B

•“3BW . ~41b!

The difference between these constitutive relations reside
the exchange ofEW andBW in the curl terms. Nonetheless, the
are rather similar in form. Moreover, artificial chiral mate
als have been constructed and tested experimentally@2,3#.
These observations have led to the suggestions made in@20#

FIG. 2. The amplitude reflection coefficients for narrow a
wide pulsed Gaussian beams show the perfect electric condu
backed TD-LM slab to be an excellent absorber.
e-

o-

ux
.-P
te
d

ed
l

in

for realizing a slab of the TD-LM absorber using specifica
designed electromagnetic scatterers~loaded antennas! em-
bedded in a matrix to achieve an artificial electric and m
netic material with the requisite polarization and magneti
tion characteristics. The properties of these small loa
antennas can be adjusted to obtain those characteris
However, as pointed out by Roberts@32,33#, there are many
equivalent ways to realize a particular dispersive mediu
Thus more effective realizations might be achievable. S
eral potential constructions of an artificial TD-LM are no
being actively considered.

VI. CONCLUSIONS

In this paper physical justifications of the time-derivati
Lorentz material model were described and discussed. It
shown that an ideal absorber could be constructed wit
uniaxial, dispersive and lossy, electric and magnetic reg
specified by a model which was introduced for both the p
larization and the magnetization fields. With a Green fun
tion solution to the TD-LM polarization~magnetization!
equation it was demonstrated that the TD-LM was cau
passive, and was constructed from two ordinary Lorentz-t
dipole terms, one shifted in time from the other by a re
valued time constant. This analysis also emphasized the
nections between the terms proportional to the time der
tives of the fields and the TD-LM loss mechanisms. T
numerical implementation of a TD-LM slab terminated wi
perfect electric conductor was discussed, and numerical t
of this configuration were defined. The numerical tests de
onstrated the effectiveness of the TD-LM slab in absorb
broad bandwidth pulsed Gaussian beams having narrow
broad beam waists.
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